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1. Introduction 
 
Invention by W. Paul in 1953 [1] of the 

radiofrequency (rf) quadrupole mass filter (QMF) marks 
the beginning of a new era for the devices dedicated to the 
ion beam manipulation, and ion storage. The huge interest 
shown in our days for such devices is justified by their 
wide applicability. Fields as: high resolution atomic 
spectroscopy, atomic clocks based on stored ions in rf 
traps [2], radioactive ion beam manipulation in nuclear 
physics [3, 4], mass filters, mass spectrometry [5], 
quantum computing [6], and many other, from macro to 
nano scale could not be conceived without such devices. 

We focus now on 2D rf confining devices. The well 
known is the QMF. An easy way to build a device that 
approximates an ideal QMF is to use parallel cylindrical 
electrodes (Fig. 1). 

 

 
 

Fig. 1. Cross-sectional view of a four electrodes QMF; 
arbitrary  units. The  two  crossing  lines represent the 

region of vanishing potential. 
 

However, such geometry does not ensure the ideal 
quadrupolar potential of a QMF. In the 2D model, the 
scalar potential of such a device can be expressed as 
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Since this electrode setup preserves the four-fold 
symmetry, only terms with ...10,6,2=k  appear in the 
sum of equation (1). The first nonlinear component, i.e. 
the dodecapole C6 may be minimized if we chose a ratio 
r1/r0 of about 1.14511 [7-9]. 

The section dedicated to numerical results will 
provide evidence that such an optimum ratio exists for 
hexapole and also for octupole ion guides. 

 
 
2. The method 
 
The method proposed here finds the multipole 

coefficients Ck in the case of a 2n-fold symmetry where 2n 
cylindrical rods are used to build a 2n-pole ion guide. 

Due to the above mentioned symmetry, in a Hexapole 
Ion Guide (6-pole IG) only the coefficients  Ck with k = 3, 
9, 15… survive, while for the octupole configuration only 
the coefficients with k = 4,12,20… are needed. Generally, 
for a 2n-pole symmetry, only the coefficients with k = 
n,3n,5n… appear. 

First step of the method. Due to this particular 
symmetry, we used the boundary element method to 
calculate the potential inside a circular sector (Fig. 2). For 
a 2n-pole ion guide, the central angle of this sector is set to 
π/n. 

 

 
Fig. 2. The   circular   sector   where  the  potential was 
calculated using the boundary element method. In a 2n-

pole ion guide, the central angle is π/n. 
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On the sector boundary the potential, φ , vanishes, 
and on the inner circle of radius r1 is chosen as −1. The 
center of this circle lies on the boundary of a circular area 
of radius1. The radius of the sector is chosen 20. 

The second step of the method. The calculated 
values for the potential were then fitted to multipole 
expansion, and the coefficients Ck of the multipole 
moments have been evaluated by using the least square 
deviation method. 

At this stage, only the points belonging to the Γ curve 
(see the inset in Fig.2) were used. More precisely, a linear 
system of 50 coefficients Ck was solved by minimizing the 
least square deviation of the potential obtained in step one. 

The numerical calculus was performed using a home-
made script written in Scilab [10]. 

 
 
3. Numerical results 
 
Maximum ratio r1/r0 of 2n-pole IG. For the 

geometry in Figure 2, there is a maximum value of the 
ratio r1/r0 for which two adjacent rods contact each other 
in the IG. In other words, there is a ratio, r1/r0, for which 
the circle of radius r1 becomes tangent to the angular 
boundary of circular sector in Fig. 2. Since in the case of 
2n-pole geometry the central angle is π/n, this maximum 

ratio is precisely given by ( ) ( ) 1
2max01 1sin/1/ −−= nrr π . 

Therefore, for QMF this ratio satisfies r1/r0 < 2.4, for 
Hexapole Ion Guide r1/r0 < 1, and r1/r0 < 0.62 in the case of 
an Octupole Ion Guide. 

Quadrupole mass filter. The QMF case was 
numerically analyzed to optimize and to verify the 
accuracy of numerical method. In this case, the literature 
[7-9], provides accurate data. As can be seen from Table 1, 
our method found the optimal ratio r1/r0 = 1.14511, at 
which dodecapole coefficient, C6 vanishes. 

 
Table 1. First five coefficients for QMF. 

 
r1/r0 C2 C6 C10 C14 C18 

2.0 -1.0374 0.036963 4.6485E-4 5.5010E-6 2.1921E-6
1.9 -1.0348 0.033981 7.7856E-4 -5.0199E-7 1.1063E-6
1.8 -1.0319 0.030748 0.0010985 2.6404E-6 5.9722E-8
1.7 -1.0287 0.027247 0.0014277 1.8728E-5 -2.2810E-7
1.6 -1.0252 0.023406 0.0017399 4.5479E-5 3.9726E-7
1.5 -1.0213 0.019166 0.0020096 7.7451E-5 9.6689E-7
1.4 -1.0169 0.014486 0.0022399 1.2250E-4 3.4950E-6
1.3 -1.0119 0.0092884 0.0024035 1.7850E-4 8.2380E-6
1.2 -1.0062 0.0034833 0.0024693 2.4406E-4 1.5994E-5

1.14511 -1.0028 1.1012E-7 0.0024493 2.8319E-4 2.1926E-5
1.1 -0.99970 -0.0030387 0.0023951 3.1642E-4 2.7941E-5
1.0 -0.99214 -0.010415 0.0021193 3.8864E-4 4.5327E-5
0.9 -0.98326 -0.018819 0.0015510 4.4576E-4 6.8878E-5
0.8 -0.97265 -0.028474 5.5488E-4 4.5731E-4 9.7180E-5
0.7 -0.95977 -0.039672 -0.0010740 3.6348E-4 1.2205E-4
0.6 -0.94377 -0.052787 -0.0036575 4.5605E-5 1.1811E-4
0.5 -0.92335 -0.068271 -0.0077232 -7.3516E-4 1.2361E-5
0.4 -0.89622 -0.086757 -0.014119 -0.0024780 -3.9917E-4
0.3 -0.85817 -0.10894 -0.024314 -0.0062643 -0.0016982
0.2 -0.80022 -0.13482 -0.040821 -0.014580 -0.0056475
0.1 -0.70897 -0.16254 -0.060309 -0.029257 -0.013299

 

Hexapole Ion Guide (6-pole IG). Table 2 presents 
numerical results obtained considering the geometry 
shown in Fig. 3. In this case, it is also possible to find a 
ratio for which the coefficient C9 also vanishes. Indeed, for 
r1/r0 = 0.5628305 , the coefficient C9 is -3.4364⋅10-9, close 
enough to zero to qualify this ratio as an optimal one. 

 

 
 

Fig.3. Cross-sectional view of the 6-pole IG; arbitrary 
units. The three crossing lines represent the 2D locus 

where the potential of this configuration is zero. 
 

Table 2. The first five coefficients for the 6-pole IG. 
 

r1/r0 C3 C9 C15 C21 C27 
0.95 -2.0466 0.37362 -0.027140 2.4349E-4 -4.8685E-4
0.90 -1.9863 0.31280 -0.0045022 -0.0021238 -1.9522E-4
0.85 -1.9257 0.25576 0.011756 -0.0024034 -1.8439E-6
0.80 -1.8647 0.20261 0.022894 -0.0015127 -2.9386E-4
0.75 -1.8032 0.15327 0.029810 3.5884E-4 -4.3637E-4
0.70 -1.7413 0.10759 0.033026 0.0026000 -3.5598E-4
0.65 -1.6787 0.065445 0.033079 0.0048382 4.9511E-5
0.60 -1.6155 0.026691 0.030404 0.0066869 6.8277E-4

.562830
5

-1.5679 -3.4364E-9 0.026890 0.0076438 0.0012360

0.55 -1.5513 -0.0088045 0.025405 0.0078741 0.0014351
0.50 -1.4862 -0.041170 0.018431 0.0081842 0.0021500
0.45 -1.4196 -0.070567 0.0098204 0.0074451 0.0026754
0.40 -1.3514 -0.097084 -2.0543E-4 0.0055321 0.0028055
0.35 -1.2809 -0.12080 -0.011449 0.0023195 0.0023371
0.30 -1.2075 -0.14185 -0.023727 -0.0023348 0.0010191
0.25 -1.1299 -0.16025 -0.036947 -0.0086003 -0.0014697
0.20 -1.0460 -0.17582 -0.051079 -0.016746 -0.0055742
0.15 -0.95236 -0.18802 -0.066070 -0.027157 -0.011971
0.10 -0.84142 -0.19470 -0.081444 -0.040248 -0.021699
0.05 -0.69455 -0.18800 -0.094008 -0.054978 -0.035740

 
Octupole Ion Guide (8-pole IG). The diagram in Fig. 

4 shows the geometry of an 8-pole IG, while Table 2 
includes the data computed in this case. As in the previous 
cases, there is an optimal ratio r1/r0 of about 0.372159, for 
which C12 is very close to zero. 
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Fig. 4. Cross-sectional view of the 8-pole IG; arbitrary 
units. 

 
Table 3. The first five coefficients for the 8-pole IG. 

 
r1/r0 C4 C12 C20 C28 C36 

0.60 -2.6951 0.90820 -0.14127 0.042232 0.022758
0.55 -2.5099 0.61855 0.012037 -0.018961 4.2574E-5
0.50 -2.3297 0.38693 0.084580 -

0.0089739
-

0.0049172
0.45 -2.1541 0.20430 0.10216 0.011666 -

0.0038747
0.40 -1.9829 0.063131 0.087709 0.026288 0.0025727

.372159 -1.8892 -8.9177E-7 0.071811 0.029704 0.0065744
0.35 -1.8155 -0.043260 0.056938 0.029884 0.0091564
0.30 -1.6514 -0.12071 0.020175 0.023238 0.011886
0.25 -1.4894 -0.17424 -0.016190 0.0093491 0.0092223
0.20 -1.3276 -0.20816 -0.048483 -

0.0084918
0.0015470

0.15 -1.1624 -0.22588 -0.074973 -0.027604 -
0.0099895

0.10 -0.98611 -0.22897 -0.095010 -0.046268 -0.024288
0.05 -0.77768 -0.21248 -0.10608 -0.062356 -0.040334
 
 
4. Conclusions 
 
Simulations of ion confining in 2D devices like 

Hexapole or Octupole Ion Guide need accurate estimation 
of the potential function in (1). Therefore, the method 
described here provided very useful numerical examples.  

The results above demonstrate that optimal ratios  
r1/r0 exist for Hexapole and Octupole Ion guides. The 
precision of the method compares well to other previously 
reported methods in the literature [7-9]. The method can 
easily be extended to any two-dimensional configuration 
of electrodes. The accuracy of the method greatly 
improves when, in the second step, the points used are 
close enough to the circle of radius 1. 

The accuracy also increases when increasing the 
number of terms included in the series (1). In practice, the 
numerical errors in the second step also increase with the 
number of terms. Therefore, the number of terms will be 
chosen in such a manner to guarantee a minimal 
interpolation error. 

The symmetry of the problem is a key factor for the 
accuracy of our method. As a result, regions like the 
circular sector in Fig. 2, must be carefully chosen when the 
symmetry is to be taken into account. 

The lower the symmetry of the problem, the greater 
the number of terms in series (1). 
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